5 research outputs found

    Distributed Robotic Vision for Calibration, Localisation, and Mapping

    Get PDF
    This dissertation explores distributed algorithms for calibration, localisation, and mapping in the context of a multi-robot network equipped with cameras and onboard processing, comparing against centralised alternatives where all data is transmitted to a singular external node on which processing occurs. With the rise of large-scale camera networks, and as low-cost on-board processing becomes increasingly feasible in robotics networks, distributed algorithms are becoming important for robustness and scalability. Standard solutions to multi-camera computer vision require the data from all nodes to be processed at a central node which represents a significant single point of failure and incurs infeasible communication costs. Distributed solutions solve these issues by spreading the work over the entire network, operating only on local calculations and direct communication with nearby neighbours. This research considers a framework for a distributed robotic vision platform for calibration, localisation, mapping tasks where three main stages are identified: an initialisation stage where calibration and localisation are performed in a distributed manner, a local tracking stage where visual odometry is performed without inter-robot communication, and a global mapping stage where global alignment and optimisation strategies are applied. In consideration of this framework, this research investigates how algorithms can be developed to produce fundamentally distributed solutions, designed to minimise computational complexity whilst maintaining excellent performance, and designed to operate effectively in the long term. Therefore, three primary objectives are sought aligning with these three stages

    Robust one-dimensional calibration and localisation of a distributed camera sensor network

    No full text
    Calibration and localisation of a camera sensor network is an essential requirement for higher-level computer vision tasks, such as mapping or tracking. Additionally, distributed algorithms are being increasingly used to create scalable networks robust to node failure. We propose a distributed calibration and localisation algorithm based on multi-view one-dimensional calibration, alternating direction method of multipliers, and Gaussian belief propagation. Our algorithm builds upon an existing calibration algorithm by improving the numerical conditioning and non-linear refinement. We adapt this to a distributed network, bringing local estimates at each camera node to global consensus. Simulation and experimental results show that our algorithm performs with high accuracy compared to other calibration techniques, in centralised and distributed networks, and is well suited for practical applications

    Comprehensive survey of image steganography: Techniques, Evaluations, and trends in future research

    No full text
    Storing and communicating secret and/or private information has become part of our daily life whether it is for our employment or personal well-being. Therefore, secure storage and transmission of the secret information have received the undivided attention of many researchers. The techniques for hiding confidential data in inconspicuous digital media such as video, audio, and image are collectively termed as Steganography. Among various media types used, the popularity and availability of digital images are high and in this research work and hence, our focus is on implementing digital image steganography. The main challenge in designing a steganographic system is to maintain a fair trade-off between robustness, security, imperceptibility and higher bit embedding rate. This research article provides a thorough review of existing types of image steganography and the recent contributions in each category in multiple modalities. The article also provides a complete overview of image steganography including general operation, requirements, different aspects, different types and their performance evaluations. Different performance analysis measures for evaluating steganographic system are also discussed here. Moreover, we also discuss the strategy to select different cover media for different applications and a few state-of-the-art steganalysis systems
    corecore